Modelling sub-micron secondary aerosol formation with the ADCHEM-ClusterIn model system

Results over Northern Europe in year 2018

+ preliminary results from the EMEP July 2022 campaign.

<u>Ågot Watne</u>, Pontus Roldin, Michael Priestley, Robin Wollesen de Jonge, Carlton Xavier, August Thomasson, Sara Bengtsdotter and Tinja Olenius.

ADCHEM

- A type of semi-Lagrangian chemistry transport model with detailed chemistry and aerosol dynamics*
- Typically run along pre-calculated air mass trajectories (e.g. from HYSPLIT or FLEXPART) that arrive at different measurement stations (receptor locations)
- Mostly run as a 1D-collumn modell, but can also be used as a 2D-model for e.g. urban plume dilution and ageing studies**,***

Atmos. Chem. Phys., 11, 5867–5896, 2011 www.atmos-chem-phys.net/11/5867/2011/ doi:10.5194/acp-11-5867-2011 © Author(s) 2011. CC Attribution 3.0 License.

Development and evaluation of the aerosol dynamics and gas phase chemistry model ADCHEM

P. Roldin¹, E. Swietlicki¹, G. Schurgers², A. Arneth^{2,3}, K. E. J. Lehtinen^{4,5}, M. Boy⁶, and M. Kulmala⁶

Atmos. Chem. Phys., 11, 5897–5915, 2011 www.atmos-chem-phys.net/11/5897/2011/ doi:10.5194/acp-11-5897-2011 © Author(s) 2011, CC Attribution 3.0 License.

eceived: 9 May 2017

epted: 8 September 201

Aerosol ageing in an urban plume – implication for climate

P. Roldin¹, E. Swietlicki¹, A. Massling^{1,*}, A. Kristensson¹, J. Löndahl¹, A. Eriksson^{1,2}, J. Pagels², and S. Gustafsson³

OPEN Diesel soot aging in urban plumes

within hours under cold dark and humid conditions

A. C. Eriksson^{1,2}, C. Wittbom¹, P. Roldin^{1,3}, M. Sporre⁴, E. Öström^{1,5}, P. Nilsson², J. Martinsson^{1,5}, J. Rissler², E. Z. Nordin², B. Svenningsson¹, J. Pagels² & E. Swietlicki¹

Representation of secondary organic aerosol (SOA) formation in ADCHEM

- ADCHEM-ClusterIn simulates the gas-phase chemistry and secondary organic aerosol formation using a detailed chemical mechanism based on the Master Chemical Mechanism* and the Peroxy Radical Autoxidation Mechanism (PRAM) for HOM formation from monoterpens**,*** and aromatic compounds****
- The particle size dependent SOA formation involve >1000 organic molecules.

		M
A		
KL		
		20
the second second		

Master	Che	emic	alN	Tutorial Mechar	nism (v3.3.1)	*
	f Yor	k		0	Nation Atmos	al Centre for pheric Science VIRONMENT RESEARCH COL	

ARTICLE	nature communications ***	nature communications **** 3 Article https://doi.org/10.1038/s41467-023-40675-2 Molecular rearrangement of bicyclic peroxy		
The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system	formation of highly oxygenated biogenic molecules in the atmosphere	radicals is a key route to aerosol from aromatics		
Pontus Roldin © ¹ *, Mikael Ehn © ² , Theo Kurtén ³ , Tinja Olenius ⁴ , Matti P. Rissanen ² , Nina Sarnela ² , Jonas Elm © ⁵ , Pekka Rantala ² , Liqing Hao ⁶ , Noora Hyttinen © ⁷ , Liine Heikkinen © ² , Douglas R. Worsnop ^{2,8} , Lukas Pichelstorfer ^{2,9} , Carlton Xavier © ² , Petri Clusius ² , Emilie Öström ¹ , Tuukka Petäjä © ² , Markku Kulmala ² , Hanna Vehkamäki © ² , Annele Virtanen ⁶ , Ilona Riipinen ⁴ & Michael Boy © ²	Received: 14 October 2022 A list of authors and their affiliations appears at the end of the paper	Received: 24 March 2023 Siddharth Iyer © ¹ ☉, Avinash Kumar © ¹ , Anni Savolainen O ¹ , Shawon Barua O ¹ , Christopher Daub O ² , Lukas Pichelstorfer ³ , Pontus Roldin O ^{4,5} , Olga Garmash ¹⁶ , Prasenjit Seal ¹ , Theo Kurtén O ² & Matti Rissanen O ¹² ⊠ Publiched unine: 12 Jumut 2023 Prasenjit Seal ¹ , Theo Kurtén O ² & Matti Rissanen O ¹² ⊠		

Representation of atmospheric new particle formation (NPF) in ADCHEM

New particle formation in 2018

90° 90°_N 10¹ 10² J HIO₃-HIO₂ (s⁻¹ cm⁻³) 10⁰ R 75°N 10¹ K cm⁻³) 75° N J NH₃-H₂SO₄ (s⁻¹ 10⁻¹ 10⁰ *60* ° 60° N 10⁻² 10⁻¹ 10⁻³ 30° E $15^{\circ}W$ 10⁻² $15^{\circ}W$ 30° E 0[°] 15[°] E 15[°] E 0°

90-percentile NPF rates ammonia-sulfuric acid and iodine oxides

SVENSKA MILJÖINSTITUTET

Evaluation of BVOC concentrations using long-term observations

• Evaluation of modelled monoterpene and isoprene concentrations at Hyytiälä, Finland using PTR-MS observations (Master thesis work by Sara Bengtsdotter, Lund Univ.)

• Outlook - compare modelled and observed (HR PTR-MS) VOC concentrations at the ACTRIS Hyltemossa field station in S. Sweden (VOC observations since 2019)

Secondary aerosol concentrations in 2018

- Although the BSOA formation mechanisms is ADCHEM can be considered state-of-the-art the modelled monoterpene concentrations are underestimated with a factor of ~2 in 2018 (Hyytiälä).
- The present model version most likely underestimates the anthropogenic secondary organic aerosol formation. Ongoing work to improve the anthropogenic SOA formation in the Horizon Europe project PAREMPI: <u>https://parempi.eu/</u>
- Dimethyl sulfide (DMS) emissions an important source of MSA and SO₄ aerosol mass outside the coast of Norway.

Preliminary model results from the EMEP campaign in July 2022

20° W

Particle number size distributions

Neuglobsow- New particle formation

Time (days)

10⁰

Neuglobsow – Secondary aerosols

Neuglobsow- aromatic compounds

Neuglobsow-monoterpenes

Observations

Time (days)

Modelled

Take home message

- Modelling sub-micron secondary aerosol formation with the ADCHEM-ClusterIn model system can be used to quantify processes and sources to ultrafine particles in Europe.
- The present model version most likely underestimates the anthropogenic secondary organic aerosol formation.
- We need more (long-term) measurements of aerosols precursors!

